Friday, September 3, 2010

biotech robotics


Biotechnology material handling applications are among some of the fastest growing areas of robotics. Drug discovery and vaccines research have moved material handling robotics from the factory floor to academic laboratories and to research and development departments of biotechnology firms.

Biotech vs. Non-Biotech
Biotech is not just another industrial material handling applications. While there are some similarities between biotech material handling and non-biotech work cells, some major differences exist.

‘‘The major difference of biotech material handling applications is the need for flexibility and multi-tasking,’‘ said Michael Perreault. ‘‘Biotech work cells have the ability to run several processes simultaneously.’‘ Perreault is vice president of Midmac Systems, Inc., an engineering services and a robotic system integrator located in St. Paul, Minnesota. Perreault added that biotech work cells tend to have smaller batch runs than non-biotech material handling applications.

Trevor Jones of Thermo CRS agrees with Perreault for the need of more flexibility in biotech over non-biotech work cells. Jones is director of OEM business development at Thermo CRS, a system integrator and robot manufacturer in Burlington, Ontario.

‘‘The major difference between biotech and non-biotech material handling work cells is the use of software. Biotech applications require more flexibility than traditional material handling operations,’‘ Jones said. ‘‘In an industrial work cell, designers are much more concerned with achieving a fixed optimum output so they install dedicated end-effecters for achieving a single purpose at that time in a manufacturing plant.’‘

In biotech systems, software manages the throughput of each micro-titer plate to best utilize the available hardware. Biotech hardware has to deal with frequently changing assays. It is common to run multiple assays through a system simultaneously.

0 comments: